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SUMMARY

The development of an alternative medium for displaying information in complex human-

machine interfaces is described. The three-dimensional virtual acoustic display is a means for

accurately transfering information to a human operator using the auditory modality; it combines

directional and semantic characteristics to form naturalistic representations of dynamic objects and

events in remotely-sensed or simulated environments. Although the technology can stand alone, it is

envisioned as a component of a larger multisensory environment and will no doubt find its greatest

utility in that context. The general philosophy in the design of the display has been that the develop-

ment of advanced computer interfaces should be driven fu'st by an understanding of human percep-

tual requirements, and later by technological capabilities or constraints. In expanding on this view,

the paper addresses current and potential uses of virtual acoustic displays, characterizes such dis-

plays, reviews recent approaches to their implementation and application, describes the research

project at NASA Ames in some detail, and finally outlines some critical research issues for the

future.

INTRODUCTION

Rather than focus on the "multi" part of multimedia interfaces, this paper will emphasize the

justification and development of a particular medium, the three-dimensional virtual acoustic display.

Although the technology can stand alone, it is envisioned as a component of a larger multisensory

environment and will no doubt find its greatest utility in that context. The general philosophy in the

design of the display has been that the development of advanced computer interfaces should be

driven flu'st by an understanding of human perceptual requirements, and later by technological capa-

bilities or constraints. In expandingon this view, I will address why virtual acoustic displays are use-

ful, characterize the abilities of such displays, review some recent approaches to their implementa-

tion and application, describe the current research at NASA Ames in some detail, and finally outline

some critical research issues for the future. Since these goals are rather ambitious, I apologize in

advance for neglecting any important work or issues in an area that seems to be rapidly gaining

momentum.

WHY VIRTUAL ACOUSTIC DISPLAYS?

The recent burgeoning of computing technology requires that people learn to interpret increas-

ingly complex systems of information and control increasingly complex machines. One approach to

this problem has been to develop direct-manipulation, graphical computer interfaces exemplified by

the ubiquitous combination of the desktop metaphor and the mouse. Such spatially-organized inter-

faces can provide familiarity and consistency across applications, thus avoiding much of the task-

dependent learning of the older text-oriented displays. Lately, a considerable amount of attention has

been devoted to a more ambitious type of reconfigurable interface called the virtual display. Despite

the oft-touted "revolutionary" nature of this field, the research has many antecedents in previous



work in three-dimensionalcomputergraphics,interactiveinput/outputdevices,andsimulationtech-
nology.Someof theearliestwork in virtual interfaceswasdoneby Sutherland(1968)usingbinocu-
larhead-mounteddisplays.Sutherlandcharacterizedthegoalof virtual interfaceresearch,stating,
"The screenis awindow throughwhichoneseesavirtual world.Thechallengeis to makethatworld
look real,actreal,soundreal,feel real."As technologyhasadvanced,virtual displayshaveadopted
athree-dimensionalspatialorganization,in orderto provideamorenaturalmeansof accessingand
manipulatinginformation.A fewprojectshavetakenthespatialmetaphorto its limit by directly
involving theoperatorin adataenvironment(e.g.,Furness,1986;Brooks,1988;Fisheret al., 1988).
For example,Brooks(1988)andhiscolleagueshaveworkedonathree-dimensionalinterfacein
whichachemistcanvisuallyandmanuallyinteractwith avirtual modelof adrugcompound,
attemptingto discoverthebondingsiteof amoleculeby literally seeingandfeelingtheinterplayof
thechemicalforcesat work. it seemsthatthekind of "artificial reality" oncerelegatedsolelyto the
specializedworld of thecockpitsimulatoris nowbeingseenasthenextstepin interfacedevelop-
mentfor manytypesof advancedcomputingapplications(Foley,1987).

Oftentheonly modalitiesavailablefor interactingwith complexinformationsystemshavebeen
visualandmanual.Many investigators,however,havepointedout the importanceof theauditory
systemasanalternativeor supplementaryinformationchannel(e.g.,Garner,1949;Deatherage,
1972;Doll et al., 1986).Most recently,attentionhasbeendevotedto theuseof non-speechaudioas
an interfacemedium(Patterson,1982;Gaver,1986;BegaultandWenzel, 1990;Blattneret a1.,1989;
Buxtonet al., 1989).For example,auditorysignalsaredetectedmorequickly thanvisualsignalsand
tendto produceanalertingor orientingresponse(MowbrayandGebhard,1961;Patterson,1982).
Thesecharacteristicsareprobablyresponsiblefor themostprevalentuseof non-speechaudioin
simplewarningsystems,suchasthemalfunctionalarmsusedin aircraftcockpitsor thesirenof an
ambulance.Anotheradvantageof auditionis that it is primarily atemporalsenseandwe are
extremelysensitiveto changesin anacousticsignalovertime(MowbrayandGebhard,1961;
Kubovy, 1981). This feature tends to bring a new acoustical event to our attention and conversely,

allows us to relegate sustained or uninformative sounds to the background. Thus audio is particularly

suited to monitoring state changes over time, for example, when a car engine suddenly begins to
malfunction.

Non-speech signals have the potential to provide an even richer display medium if they are care-

fully designed with human perceptual abilities in mind. Just as a movie with sound is much more

compelling and informationally-rich than a silent film, so could a computer interface be enhanced by

an appropriate "sound track" to the task at hand. If used properly, sound need not be distracting or

cacophonous or merely uninformative. Principles of design for auditory icons and auditory symbolo-

gies can be gleaned from the fields of music (Deutsch, 1982; Blattner et al., 1989), psychoacoustics

(Carterett e and Friedman, i 978 i Patterson, 1982), and psychological studies of the acoustical deter-

minants of perceptual organization (Bregman, 1981; 1990; Kubovy, 1981; Buxt0n et al., 1989). For

example, following from Gibson's (1979) ecological approach to perception, one can conceive of the

audible world as a collection of acoustic "objects." Various acoustic features, such as temporal

onsets and offsets, timbre, pitch, intensity, and rhythm, can specify the identities of the objects and

convey meaning about discrete events or ongoing actions in the world and their relationships to one

an0ther_ One could systematicaily manipulate these features, effectively creating an auditory sym-

bology which operates on a continuum from "literal" everyday sounds, such as the clunk of mail in
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your mailbox(e.g.,Gaver's"SonicFinder," 1986),to acompletelyabstractmappingof statistical
dataintosoundparameters(Bly, 1982;Smithetal., 1990;Blattneretal., 1989).

Suchadisplaycouldbe furtherenhancedby takingadvantageof theauditorysystem's ability to
segregate,monitor,andswitchattentionamongsimultaneoussourcesof sound(Mowbrayand
Gebhard,1961).Oneof themostimportantdeterminantsof acousticsegregationisanobject'sloca-
tion in space(KubovyandHoward,1976;Bregman,1981,1990;Deutsch,1982).

A three-dimensionalauditorydisplaymaybe most usefully applied in contexts where the repre-

sentation of spatial information is important, particularly when visual cues are limited or absent and

workload is high. Such displays can potentially enhance information transfer by combining direc-

tional with iconic information in a quite naturalistic representation of dynamic objects in the inter-

face. Borrowing a term from Gaver (1986), an obvious aspect of"everyday listening" is the fact that

we live and listen in a three-dimensional world. A primary advantage of the auditory system is that it

allows us to monitor and identify sources of information from all possible locations, not just the

direction of gaze. In fact, I would like to suggest that a good rule of thumb for knowing when to

provide acoustic cues is to recall how we naturally use audition to gain information and explore the

environment; that is, "the function of the ears is to point the eyes." Thus the auditory system can

provide a more coarsely-tuned mechanism to direct the attention of our more finely-tuned visual

analyses. For example, Perrott et al. (1991) have recently reported that aurally-guided visual search

for a target in a cluttered visual display is superior to unaided visual search, even for objects in the

central visual field. Such features will be especially useful in inherently spatial tasks, such as air traf-

fic control (ATC) displays for the tower or cockpit. For example, ATC controllers are being asked to

integrate increasingly heavy air traffic into increasingly complex landing patterns, such as the triple

parallel approach proposed to maximize the flow of incoming aircraft. Research at NASA Ames, in

collaboration with the Federal Aviation Administration, will emphasize two types of acoustic dis-

plays because of their conceptual simplicity and the likelihood that they will provide significant ben-

efits to current ATC systems. One example is an ATC display in which the controller hears commu-

nications from incoming traffic in positions which correspond to their actual location in the terminal

area. In such a display, it should be more immediately obvious to the listener when aircraft are on a

potential collision course because they would be heard in their true spatial locations and their routes

could be tracked over time. A second example involves alerting systems for ATC. An auditory icon,

such as a complex signal with a unique temporal rhythm, could also be used as a warning of urgent

situations like potential runway incursions. Again, the signal could be processed to convey true

directional information and urgency could be emphasized by placing the warning close to the

listener's head, e.g., within the boundaries of their "personal space" (Begault and Wenzel, 1990).

A second advantage of the binaural system, often referred to as the "cocktail party effect", is that

it improves the intelligibility of sources in noise and assists in the segregation of multiple sound

sources (Cherry, 1953; Bronkhorst and Plomp, 1988). This effect could be critical in applications

involving the kind of encoded non-speech messages proposed for scientific "visualization," the

acoustic representation of multi-dimensional data (e.g., Bly, 1982; Blattner et al., 1989; Smith et al.,

1990), or the development of altemative interfaces for the visually impaired (Edwards, 1989; Loomis

et al., 1990). Another aspect of auditory spatial cues is that, in conjunction with the other senses,

they can act as potentiators of information in a display. For example, visual and auditory cues

together can reinforce the information content of a display and provide a greater sense of presence or
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realismin a mannernot readilyachievedby eithermodalityalone(Colquhoun,1975;O'Learyand
Rhodes,1984;Warrenet al., 1981).Similarly, in direct-manipulationtasks,auditorycuescanpro-
vide supportinginformationfor therepresentationof force-feedback(Wenzelet al., 1990),aquite
difficult interfaceproblemfor multimodaldisplayswhich isonly beginningto besolved(e.g.,
Minsky et al., 1990).Intersensorysynergismwill beparticularlyusefulin telepresenceapplications,
includingadvancedteleconferencing(Ludwig et al., 1990),sharedelectronicworkspaces(Fisher
et al., 1988;GaverandSmith, 1990),monitoringteleroboticactivitiesin remoteor hazardoussitua-
tions (Wenzeiet al., 1990),andentertainmentenvironments(KendallandMartens,1984;Kendall
andWilde, 1989; Cooper and Bauck, 1989). Thus, the combination of veridical spatial cues with

good principles of iconic design could provide an extremely powerful and information-rich display

which is also quite easy to use, Here, the term veridical is used to indicate that spatial cues are both

realistic and result in the accurate transfer of information; e.g., the presentation of such cues results

in accurate estimates of perceived location by human listeners in psychophysical studies.

From the above considerations, one can attempt to a define a virtual acoustic display and list

some of the goals to keep in mind when developing the supporting technology and conducting

related perceptual research. A virtual acoustic display is a medium for accurately transfering infor-

mation to a human operator using the auditory modality; it combines directional and semantic char-

acteristics to form naturalistic representations of dynamic objects and events in remotely-sensed or

simulated environments. As with visual displays, this definition does not necessarily mean that the

virtual representation must be indistinguishable from reality. Rather, it implies that the display

should provide a functional equivalence to human audition in the context of the task to be performed.

To achieve this goal, we must know a great deal about our sensory biases; that is, the what, when,

and how of the acoustic information used by the human listener. It also means that we must system-

atically verify that the displays we develop are perceptually viable. Therefore the display must:

(1) adequately reproduce the audible spectrum in frequency resolution and dynamic range, (2) pre-

sent information accurately in three spatial dimensions, (3) be capable of representing multiple

sources which can be either static or moving, (4) be real-time and interactive; that is, responsive to

the ongoing needs of the user, (5) be head-coupled to provide a stable acoustic environment with

dynamic cues appropriately correlated with head motion, and (6) be flexible in the type of acoustic

information which can be displayed; for example, real environmental sounds, acoustic icons, speech,

or streams of multidimensional auditory patterns or objects. A corollary to this approach is that such

a display may potentially be used to enhance normal perceptual capabilities. For example, Durlach

(I 990; Durlach and Pang, 1986) has proposed that localization cues could be artificially magnified to

create a kind of super localization ability.

ANTECEDENTS OF THREE-DIMENSIONAL VIRTUAL ACOUSTIC DISPLAYS

As noted above, the utility of a 3D auditory display greatly depends on the user's ability to local-

ize the various sources of information in auditory space. While compromises obviously have to be

made to achieve a practical system, the particular features or limitations of the latest hardware should

be considered subservient to human sensory and performance requirements. Thus, designers of such

interfaces must carefully consider the acoustic cues needed by listeners for accurate localization and

ensure that these cues will be faithfully (or at least adequately, in a human performance sense) trans-
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ducedby thesynthesisdeviceratherthanlettingcurrenttechnologydrive theimplementation.In
fact,knowledgeaboutsensoryrequirementsmightactuallysaveprocessingpowerin somecasesand
indicateothersto which moreresourcesshouldbedevoted.

Psychoacoustical Antecedents

Much of the research on human sound localization is summarized in the classic "duplex theory"

which emphasizes the role of two primary cues, interaural differences in time of arrival at low fre-

quencies and interaural differences in intensity at high frequencies (Lord Rayleigh, 1907). However,

binaural research over the last 25 years points to serious limitations with this approach (see Blauert,

1983, for an extensive review of spatial hearing). For example, it cannot account for the ability of

subjects to localize sounds on the vertical median plane where interaural cues are minimal (Blauert,

1969; Butler and Belendiuk, 1977; Oldfield and Parker, 1986). Similarly, when subjects listen to

stimuli over headphones, they are perceived as being inside the head even though interaural temporal

and intensity differences appropriate to an external source location are present (Plenge, I974). Many

studies now suggest that deficiencies of the duplex theory reflect the important contribution to local-

ization of the direction-dependent filtering which occurs when incoming, sound waves interact with

the outer ears or pinnae. Experiments have shown that spectral shaping by the pinnae is highly direc-

tion dependent (Shaw, 1974), that the absence of pinna cues degrades localization accuracy (Gardner

and Gardner, 1973; Oldfield and Parker, 1984b), and that pinna cues are primarily responsible for

externalization or the "outside-the-head" sensation (Plenge, 1974). Such data suggest that perceptu-

ally-veridical localization over headphones should be possible if the spectral shaping by the pinnae

as well as the interaural difference cues are adequately synthesized.

Approaches to Implementation

Prior to the development of current techniques for synthesizing out-of-head localization, there

were some early attempts at creating what we might now call a virtual acoustic display. One of these

was the rather amazing pseudophone apparatus (fig. 1) used during World War I for detecting and

locating enemy aircraft. It is an early example of the use of enhanced localization cues in the form of

large directional pinnae and an expanded interaural axis. A less elaborate display called FLYBAR

(FLYing By Auditory Reference) was developed by Forbes (1946) just after World War II. This sys-

tem used only crude left/right intensity panning along with pitch and temporal pattern changes to

indicate turn, bank, and air speed in an acoustic display for instrument flying.

Much later, investigators began to think about simulating veridical auditory localization cues as a

way of analyzing and enhancing the listening experience in stereo reproduction, and eventually, to

display information. In general, the approaches have concentrated on various means for reproducing

the effects of the Head-Related Transfer Function (HRTF); that is, the direction-dependent acoustic

effects imposed on an incoming signal by the outer ears. The nature and measurement of the HRTF
will be considered later in more detail.

One class of techniques derives from binaural recording and the development of normative mani-

kins, such as the KEMAR (Knowles Electronics, Inc.) and Neumann (e.g., Hudde and Schroter, 198 l)
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Figure 1, Photo of the pseudophone apparatus used for detecting and localizing aircraft during

World War I (from Scientists in Power, Spencer R. Weart, Harvard University Press (Cambridge,

Mass.; reproduced with permission, Niels Bohr Library, American Institute of Physics, New York,

NY)).

artificial heads, used for applications like assessing concert hall acoustics (see Blauert, 1983). Recent

examples of a real time version of this approach in information display include the work by Doll at

the Georgia Institute of Technology (Doll et al., 1986) and the Gehring ALl00 system developed for

the Super Cockpit Project at Wright-Patterson Air Force Base (see Calhoun et al., 1987). These

projects used a movable artificial head to simulate moving sources and correlated head-motion. The

listener heard headphone signals transduced in the ears of a manikin which was mechanically

coupled to that of the listener's own head.

Another type of real time virtual display is the work by Loomis et al. (1990) on a navigation aid

for the blind. In this analog system, which worked well in an active tracking task, spatial cues were

approximated using various types of simple filters with interaural time and intensity differences

dynarnically linked to head motion. The display also included simple distance and reverberation cues
such as an intensity rolloff with distance and the ratio of direct to reflected energy.

Much of the recent work since the early 80s has been devoted to the measurement and real time

digital synthesis of HRTFs. Techniques for creating digital filters based on measurements of finite

impulse responses in the ear canals of either individual subjects or artificial heads have been under

development since the late 70s. But it is only with the advent of powerful new digital signal-

processing (DSP) chips that a few real-time systems have appeared in the last few years in Europe
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andtheUnitedStates.In general,thesesystemsareintendedfor headphonedeliveryandusetime-
domainconvolutionto achieverealtimeperformance.

Oneexampleis theCreativeAudioProcessor,akind of binauralmixingconsole,developedby
AKG in Austriaandbasedon ideasproposedby Blauert(1984).TheCAP340M is aimedat appli-
cationslike audiorecording,acousticdesign,andpsychoacousticresearch(Persterer,1989).This
particularsystemis ratherlarge,involving anentirerackof digital signalprocessorsandrelated
hardware.Thesystemis alsoratherpowerful in thatup to 32channelscanbe independently"spatial-
ized" in azimuthandelevationalongwith variablesimulationof roomresponsecharacteristics.Fig-
ure2, for example,illustratesthegraphicalinterfaceof thesystemfor specifyingcharacteristicsof
thebinauralmix for acollectionof independently-positionedmusicalinstruments.A collectionof
HRTFsis offered,derivedfrom measurementstakenin theearcanalsof bothmanikinsandindivid-
ual subjects.AKG's originalmeasurementsweremadebyBlauertandhiscolleagues(Blauert,
personalcommunication).In anewproduct,whichsimulatesanidealcontrolroomfor headphone
reproduction,theBAP 1000,theuserhastheoptionof havinghis/herindividual transformspro-
grammedontoaPROMcard.Interestingly,AKG's literaturementionsthatbestresultsareachieved
with individual transforms.Currentlythereareplansfor thesystemto beusedin anOctober1991
missionof theRussianSpaceProgram.TheAUDIMIR studyexamineswhetheracousticcuesfor
orientationcaneliminatemismatchof auditoryandvestibularcuesandthuscounteractspacesick-
ness(AKG Report,Nov. 1989).

OtherprojectsinEuropederivefrom theeffortsof a groupof researchersin Germany.Thiswork
includesthemostrecenteffortsof JensBlauertandhiscolleaguesattheRuhrUniversityatBochum
(Boergeret al., 1977;LehnertandBlauert,1989;Posseltet al., 1986).Thegroupat Bochumhas
beenworkingonaprototypePC-basedDSPsystem,againakind of binauralmixing console,whose
proposedfeaturesincluderealtimeconvolutionof HRTFsfor up to four sources,interpolation
betweentransformsto simulatemotion,androommodeling.Thegrouphasdevotedquiteabit of
effort to measuringHRTFsfor both individual subjectsandartificial heads(e.g.,theNeumannhead),
aswell asdevelopingcomputersimulationsof transforms.

Anotherresearcherin Germany,KlausGenuit,workedat theInstituteof Technologyof Aachen
andlaterwenton to form hisown company,HEAD Acoustics.HEAD Acoustics has also produced a

real time, four-channel binaural mixing console and simulator for room acoustics as well as a new

version of an artificial head (Gierlich and Genuit, 1989). Genuit's work is particularly notable for his

development of a structurally-based model of the acoustic effects of the pinnae (e.g., Genuit, 1986).

That is, rather than use individualized HRTFs, Genuit has developed a parameterized, mathematical

description (based on Kirchhoff's diffraction integrals) of the acoustic effects of the pinnae, ear canal

resonances, torso, shoulder, and head. The effects of the structures have been simplified; for exam-

pie, the outer ears are modeled as three cylinders of different diameters and length. The parameteri-

zation of the model adds some flexibility to this technique and Genuit states that the calculated

transforms are within the variability of directly-measured HRTFs.

In the United States, similar projects are currently in progress. For example, at Wright-Patterson

Air Force Base, McKinley and Ericson (1988) developed a prototype system which synthesizes a

single source in azimuth in real time. The system uses HRTFs based on measurements from a
KEMAR manikin made at 1° intervals in azimuth with a head-tracker to achieve source stabilization.
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Gary Kendall and his colleagues at Northwestern University have also been working on a real time

system aimed at spatial room modeling for recording and entertainment (Kendall and Martens,

1984). Recently, Gehring Research has offered a software application for anechoic simulation using
a Motorola 56001-based DSP card which uses two sets of HRTFs with the filters truncated to

conform to the limitations of the DSP chip. One set is from a KEMAR manikin measured by

Kendall's group and the other is from an individual subject measured by Wightman at the University

of Wisconsin, Madison.

THE NASA AMES 3-D AUDITORY DISPLAY PROJECT

Since 1986, our group at NASA Ames has been working on a real time system for use in both

basic research in human sound localization and applied studies of acoustic information display in

advanced human-computer interfaces. The research began as part of the Ames Virtual Environment

Workstation (VIEW) project (Fisher et al., 1988). To achieve our objective, we have taken a four-

part approach: (1) develop a technique for synthesizing localized, acoustic stimuli based on psychoa-

coustic principles, (2) in parallel, develop the signal-processing technology required to implement

the synthesis technique in real time, (3) perceptually validate the synthesis technique with basic

psychophysical studies, and (4) use the real time device as a research tool for evaluating and refining

the approach to synthesis in both basic and applied contexts. The research has been a collaborative

effort between myself as project director, Scott Foster of Crystal River Engineering (Groveland,

Calif.), Fred Wightman and Doris Kistler of the University of Wisconsin, Madison, and since 1988,

Durand Begault and Philip Stone at NASA Ames.

As noted above, one technique for capturing both pinnae and interaural difference cues involves

binaural recording with microphones placed in the ears of a manikin (Plenge, 1974; Doll et al., 1986)

or the ear canals of a human (Butler and Belendiuk, 1977). When stimuli recorded this way are pre-

sented over headphones, there is an immediate and veridical perception of 3-D auditory space

(Plenge, 1974; Butler and Belendiuk, 1977; Blauert, 1983; Doll et al., 1986). Our procedure is

closely related to binaural recording. Rather than record stimuli directly, we measure the acoustical

transfer functions, from free-field to eardrum, at many source positions, and use these transfer func-

tions as the basis of filters with which we synthesize stimuli. These Head-Related Transfer Functions

(HRTFs), in the form of Finite Impulse Responses (FIRs), are measured using techniques adapted

from Mehrgardt and Mellert (1977) (see fig. 3). Small probe microphones are placed near each

eardrum of a human listener who is seated in an anechoic chamber (Wightman and Kistler, 1989a).

Wide-band test stimuli are presented from 144 equidistant locations in the anechoic chamber. A new

pair of impulse responses is then measured for each location in the spherical array at intervals of 15 °

in azimuth and 18 ° in elevation. HRTFs are estimated by deconvolving the loudspeakers, test stimu-

lus, and microphone responses from the recordings made with the probe microphones (Wightman

and Kistler, 1989a). The advantage of this technique is that it preserves the complex pattern of inter-

aural differences over the entire spectrum of the stimulus, thus capturing the effects of filtering by

the pinnae, head, shoulders, and torso.

For example, the insets in figure 3 show a pair of FIR filters measured for one subject for a

speaker location directly to the left and at ear level, that is, at -90 ° in azimuth and 0 ° in elevation. As



you wouldexpect,thewaveformfrom thissourcearrivedfirst andwaslargerin the left earthanthe
responsemeasuredin theright ear.Thefrequency-dependenteffectscanbeanalyzedby applyingthe
FourierTransformto thesetemporalwaveforms.

Figure4 showshow interauralamplitudeandphase(orequivalentlytime) variesasa functionof
frequencyfor four differentlocationsin azimuthat 0° in elevation.Forexample,thetop-leftpanels
showthatfor 0° in azimuthor directly in front of the listener,thereis very little differencein the
amplitudeor phaseresponsesbetweenthetwo ears.Ontheotherhand,in thetop-rightpanelsfor 90°
or directly to the listener'sright,onecanseethat,acrossthefrequencyspectrum,theamplitudeand
phaseresponsesfor theright eararelargerandleadin time(phase)with respectto theleft ear.

In orderto synthesizelocalizedsounds,a mapof "locationfilters" is constructedfrom all
144pairsof FIR filters by first transformingthemto thefrequencydomain,dividing out thespectral
effectsof theheadphonesusingFouriertechniques,andthentransformingbackto thetimedomain.

LEFT
EAR

Pinnae (outer ear)
responses measured

with probe microphones

Pinnae transforms

digitized as
finite impulse response

(FIR) filters

i. • Le f ',
%1

Synthesized
cues

Figure 3. Iliustration of the technique for synthesizing virtual acoustic sources with measurements of

the head-related transfer function. An example of a pair of finite impulse responses measured for a

source location at -90 ° to the left and 0 ° elevation (at ear level) is shown in the insets for the left and

right ears.
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The Real Time System: The Convolvotron

In the real time system, designed by Scott Foster of Crystal River Engineering, the map of

corrected FIR filters is downloaded from an 80286- or 80386-based host computer to the dual-port

memory of a real time digital signal-processor known as the Convolvotron (fig. 5). This set of two

printed-circuit boards converts one or more monaural analog inputs to digital signals at a rate of

50 kHz (16-bit resolution). Each data stream is then convolved with filter coefficients determined by

the coordinates of the desired target locations and the position of the listener's head, thus "placing"

each input signal in the perceptual 3-space of the listener. The resulting data streams are mixed,

converted to left and fight analog signals, and presented over headphones. The current configuration

allows up to four independent and simultaneous sources with an aggregate computational speed of

more than 300 million multiply-accumulates per second. This processing speed is sufficient for

simulating relatively small reverberant environments, and the hardware can be scaled upward to

accommodate the longer filter lengths required for larger enclosures.

The Convolvotron

High-speed realtime digital signal-processor

I Headtracker

80386 host

Updates 4-source
geometry

--1--_-

--2--I_

--3--1_

--4--!_

TMS 320/C25

processor

Interpolates HRTF
coefficients

Controls I/O and
timing

I HRTF map I

• Flexible processing resources
Maximum rate ~300 MIPS

• 16-bit conversion

• 50-kHz sampling rate

• Estimated latencies:
Headtracker; 50 ms
Host and DSP; 30-40 ms

--1--P'-

--2---_-

--3---_-

--4---_-

Convolution

engine

FIR filtering
and mixing

of 4 independent
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Figure 5. Block diagram of the Convolvotron system designed by Scott Foster for synthesizing three-

dimensional virtual acoustic displays in real time.
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Motion trajectoriesandstaticlocationsatgreaterresolutionthantheempiricalmeasurementsare
simulatedby selectingthefour measuredpositionsnearestto thetargetlocation and interpolating

with linear weighting functions. The interpolation algorithm effectively computes a new coefficient

at the sampling interval (every 20 gsec) so that changes in position are free from artifacts such as

clicks or switching noises. When integrated with the magnetic head-tracking system (Polhemus

3-Space Isotrack), the listener's head position can be monitored in real time so that the four simulta-

neous sources are stabilized in fixed locations or in motion trajectories relative to the user. Such

head-coupling should help to enhance the simulation since previous studies suggest that head move-

ments are important for localization (e.g., Wallach, 1940; Thurlow et al., 1967; Thurlow and Runge,

1967). This degree of interactivity, especially coupled with simulations of simple reverberant

environments, is apparently unique to the Convolvotron system.

Pilot studies at Wisconsin suggest that the interpolation approach is perceptually-viable; simple

two-way linear interpolations between locations as far apart as 60 ° in azimuth are perceptually

indistinguishable from stimuli synthesized from measured coefficients while, for elevation, localiza-

tion performance begins to degrade at separations of 36 °. These data suggest that the HRTF map of a

real time display could tolerate interpolation separations of as much as 60 ° in azimuth (currently a

maximum of 45 ° in the Convolvotron) but that the resolution of the map in elevation should proba-

bly be smaller than 36 ° (18 ° in the Convolvotron). More comprehensive evaluations of the percep-

tual consequences of interpolation are underway at NASA Ames.

As with any system required to compute data "on the fly," the term real time is a relative one.

The Convolvotron, including the host computer, has a computational delay of about 30-40 msec,

depending upon such factors as the number of simultaneous sources, the duration of the HRTFs used

as filters, and the complexity of the source geometry. An additional latency of at least 50 msec is

introduced by the head-tracker. This accumulation of computational delays has important implica-

tions for how well the system can simulate realistic moving sources or realistic head-motion. At the

maximum delay the system can only update to a new location every 90 msec. The directional update

interval, in turn, corresponds to an angular resolution of about 32 ° or greater when the relative

source-listener speed is 360 deg/msec, 16 ° or greater at 180 deg/sec, and so on. Such delays may or

may not result in a perceptible lag, depending upon how sensitive humans are to changes in angular

displacement (the minimum audible movement angle) for a given source velocity. Recent work on

the perception of auditory motion by Perrott and others using real sound sources (moving loud-

speakers) suggests that these computational latencies are acceptable for moderate velocities. For

example, for source speeds ranging from 8 to 360 deg/sec, minimum audible movement angles

ranged from about 4 to 21 °, respectively, for a 500-Hz tone-burst (Perrott, 1982; Perrott and Tucker,

1988). Thus, slower relative velocities are well within capabilities of the Convolvotron, while speeds

approaching 360 deg/sec should begin to result in perceptible delays, especially when multiple

sources or larger filters (e.g., simulation of simple reverberant rooms) are being generated.

Currently, the Convolvotron is being used in a variety of other government, university, and

industry research labs besides ours, including the NASA Ames Crew Station Research and Devel-

opment Facility, the Psychoacoustics Lab at the Research Laboratory of Electronics at MIT directed

by Durlach, and Bellcore (Ludwig et al., 1990). The system also forms part ofVPL Research's

"Audiosphere" component of their virtual reality system.
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PSYCHOPHYSICAL VALUATION OF THE SYNTHESIS TECHNIQUE

The working assumption of our synthesis technique is that if, using headphones, we could pro-

duce ear canal waveforms identical to those produced by a free-field source, we would duplicate the

free-field experience. Presumably, synthesis using individualized HRTFs would be the most likely to

replicate the free-field experience for a given listener. The only conclusive test of this assumption

must come from psychophysical studies in which free-field and synthesized, free-field listening are

directly compared.

Validation for Static Sources Using Individualized HRTFs

A recent study by Wightman and Kistler (1989b) confirmed the perceptual adequacy of the basic

approach for static sources. The stimuli were spectrally-scrambled noisebursts transduced either by

loudspeakers in an anechoic chamber or by headphones. In both free-field and headphone conditions,

the subjects indicated the apparent spatial position of a sound source by calling out numerical esti-

mates of azimuth and elevation (in degrees) using a modified spherical coordinate system. For

example, a sound heard directly in front would produce a response of "0, 0," a sound heard directly

to the left and somewhat elevated might produce "-90 azimuth, + 15 elevation," while one far to the

rear on the right and below might produce "+ 170 azimuth, -30 elevation." Subjects were blindfolded

and no feedback was given. Detailed explanations of the procedure and results can be found in the

original paper.

The data analysis of localization experiments is complicated by the fact that the stimuli and

responses are represented by points in three-dimensional space; in particular, as points on the surface

of a unit-sphere since distance remained constant in this experiment. For these spherically-organized

data, the usual statistics of means and variances are potentially misleading. For example, an azimuth

error of 15" on the horizontal plane is much larger in terms of absolute distance than a 15" error at an

elevation of 54 ° . Thus, it is more appropriate to apply the techniques of spherical statistics to charac-

terize these psychophysical data (Fisher et al., 1987). The spherical statistic used here, the judgement

centroid, is a unit-length vector with the same direction as the resultant, the vector sum of all the

unit-length judgement vectors. The direction of the centroid, described by an azimuth and an eleva-

tion, can be thought of as the "average direction" of a set of judgements from the origin, the subject's

position. Two indicators of variability, K -1 and the average angle of error, were also computed.

These results will not be discussed here; the reader is referred to the original paper.

Another type of error, observed in nearly all localization studies, is the presence of front-back

"confusions." These are responses which indicate that a source in the fro]at hemisphere, usually near

the median plane, is perceived to be in the rear hemisphere. Occasionally, the reverse situation is

also found. It is difficult to weight these types of errors accurately. Since the confusion rate is often

low (e.g., Oldfield and Parker, 1984a), reversals have generally been resolved when Computing

descriptive statistics; that is, the responses are coded as if the subjects had indicated the correct

hemisphere, as in the analyses of table 1 and figure 6. Otherwise, estimates of error would be

greatly inflated. On the other hand, if we assume that subjects' responses correctly reflect their
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Table 1. Summary statistics comparing resolved localization judgements of free-

field (boldface type) and virtual sources (in parentheses) for 8 subjects. (Adapted

from Wightman and Kistler, 1989b)

ID Goodness Azimuth Elevation Percent front-back

of fit correlation correlation reversals

SDE 0.93 (0.89) 0.98 (0.97) 0.68 (0.43) 12 (20)

SDH 0.95 (0.95) 0.96 (0.95) 0.92 (0.83) 5 (13)

SDL 0,97 (0.95) 0.98 (0.98) 0.89 (0.85) 7 (14)

SDM 0.98 (0.98) 0.98 (0.98) 0.94 (0.93) 5 (9)

SDO 0.96 (0.96) 0.99 (0.99) 0.94 (0.92) 4 (11)

SDP 0.99 (0.98) 0.99 (0.99) 0.96 (0.88) 3 (6)

SED 0.96 (0.95) 0.97 (0.99) 0.93 (0.82) 4 (6)

SER 0.96 (0.97) 0.99 (0.99) 0.96 (0.94) 5 (8)

Mean 5.6 (11)

perceptions, resolving such confusions could be misleading. Thus, the rate of confusions is usually

reported as a separate statistic.

Here, table 1 provides a general overview of the results of Wightman and Kistler (1989b). Sum-

mary statistics comparing the eight subjects' resolved judgements of location for real (free-field) and

synthesized stimuli are shown; the numbers in bold-faced type are for the free-field data and the

numbers in parentheses are for the synthesized conditions. Note that overall goodness of fit between

the actual and estimated source co-ordinates is quite comparable, 0.89 or better for the synthesized
stimuli and 0.93 or better for free-field sources. The two correlation measures indicate that while

source azimuth appears to be synthesized nearly perfectly, synthesis of source elevation is more

problematic, particularly for SDE who also has difficulty judging elevation in the free field. Exam-

ples of the range of patterns of localization behavior for resolved judgements can be seen in figure 6.

Actual source azimuth (and, in the insets, elevation) versus the judged azimuth are plotted for sub-

jects SDO and SDE of Wightman and Kistler (1989b). The panel on the left plots free-field judge-

ments and the panel on the right shows judgements for the stimuli synthesized from the subjects'

own transfer functions. On each graph, the positive diagonal, or a straight line with a slope of 1.0,

corresponds to perfect performance.

The confusion rates (table 1) were relatively low, with average rates of about 6 and 11% for free-

field and synthesized sources, respectively. Similar to the location judgements, reversal rates for the

synthesized stimuli tended to be greatest for subjects who also had higher rates in the free field.

Thus, while individual differences do occur, the pattern of results across synthesized and free-field

conditions is consistent for a given subject; it appears that Butler and Belendiuk's (1977) observation

of "good" and "bad" localizers is supported by these data.

15



120

600

• -6o
,.,.j

-120

I I

Free field (SDO)
Azimuth

o8

o®

e_ e
o

o
o

8

__8 I i

0
o

8 %0

3O

0

-30

o

®

888
Q

8 o
8

I I i_ BI
Elevation o _]

-

I I

-30 0
I I

i E) l_

I 1

30 160 8

I I I

Headphones (SDO)
Azimuth

®

o

1

I
o6

o8

8 o
8

0
o

_,® I I I Iml_l

e _ I Elevation _]60 H
O

3 N

/ I I 1 I
-30 0 30 60

I I I ,

120

60

i°
O)

-60
.-j

-120

I i I I [

of7
O-

Free field (SDE) ¢
¢

Azimuth e e

g

8o
o

o88
®

8

g
gg8

6O

30

0

-30

o

8

8 ®

I I I I
Elevation

- -

• [ 1 I

-30 0 30 60
I I

60 120

' f .......... I I I I

Headphones (SDE)
Azimuth

®®

0

o ®

o

®

®oo ®

_} ° 060

3O

0

-30

o
8
0

8 o
o

og

I I I I
Elevation

[] []

I I I I

0
®

-30 0 30 60
1 1 1 I I I I I

-120 -60 0 -120 -60 0 60 120

Target position (deg)

,

Figure 6. Scatterplots of actual source azimuth (and, in the insets, eleVation) versus judged source

azimuth for subjects SDO and SDE in both free-field and headphone conditions. The plot on the left

plots free-field judgements and the plot on the right shows judgements for the stimuli synthesized

from the subjects' own transfer functions. Each data point represents the centroid of at least 6 judge-

ments. 72 source positions are plotted in each plot. Data from 6 different source elevations are com-

bined in the azimuth plots and data from 24 different source azimuths are combined in the elevation

insets. Note that the scale is the same in the azimuth and elevation plots. (After Wightman and

Kistler, 1989b.)
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Acoustic Determinants of Performance

Individual differences in localization behavior suggest that there may be acoustic features pecu-

liar to each subject' s HRTFs which influence performance. Thus, the use of averaged transforms, or
even measurements derived from normative manikins such as the KEMAR, may or may not be an

optimum approach for simulating free-field sounds.

For example, figure 7 illustrates the between-subjects variability in the left and right-ear magnitude

responses for a single source location (after Wenzel et al., I988a). Obviously, any straightforward

averaging of these functions would tend to smooth the peaks and valleys, thus removing potentially

significant features in the acoustic transforms.
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Figure 7. Magnitude responses for a single source position are shown for 8 subjects. The left and

right ears are plotted separately.

On the other hand, it may be possible to identify specific features of HRTFs which result in good

or bad localization. The psychophysical data indicate that elevation is particularly difficult to judge,

especially for subject SDE. A preliminary analysis of elevation coding suggests that there is an

acoustic basis for this poor performance.

Figure 8 plots "interaural elevation dependency" functions for four subjects' interaural amplitude

data. The computational derivation of these functions can be found in the description of Wightman

and Kistler's (1989b) figure 10. Essentially, the six functions on each graph show how interaural

intensity changes for different elevations normalized to zero elevation, the flat function, when the

magnitude responses are collapsed across all azimuths. In spite of the large intersubject variability

illustrated in figure 7, the dependency functions for the better localizers (shown in the top three
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graphs)arequite similar to eachotherandshowclearelevationdependencies.SDE'sfunctions,on
theotherhand,aredifferent from theothersubjectsandshowlittle changewith elevation.Thus,it
appearsthat SDE'spoorperformancein judgingelevationfor bothrealandsynthesizedstimuli may
bedueto alackof distinctiveacousticfeaturescorrelatedwith elevationin hisHRTFs.
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The analysis of individual differences in pinna cues brings up a topic which has often been con-

jectured about but rarely directly tested (see Butler and Belendiuk, 1977, for an early example). That

is, can one manipulate localization performance simply by listening through another person's ears?

Or put another way, can we adapt to and take advantage of a set of good HRTFs even if we are a bad

localizer? The following data from Wenzel et al. (1988b) illustrate the kind of "cross-ear listening"

paradigm that is possible using our synthesis technique. Again, the subjects provided absolute

judgements of location as in the experiment by Wightman and Kistler (1989b).

Figure 9 shows what happens to resolved azimuth and elevation judgements when a good local-

izer listens to stimuli synthesized from another good localizer's pinna transforms. Azimuth is plotted

in the top panels and elevation is on the bottom. The left and far-right graphs plot centroids for

SDP's and SDO's azimuth judgements vs. the target locations when the stimuli were synthesized

from their own HRTFs. Front-back confusions have been resolved as described above. As can be

seen, both SDP and SDO localize the synthesized stimuli based on their own HRTFs quite well. The

center graphs show what happens when SDP listens "through" SDO's pinnae. Localization of

azimuth degrades somewhat, but not a great deal. Elevation performance degrades further, suggest-

ing that elevation cues are not as robust as azimuth cues across the range of individuals, but an

overall correspondence between real and perceived locations remains intact.

Figure 10 compares performance when a good localizer, SDO, listens to stimuli synthesized from

the HRTFs of bad localizer SDE. Again for azimuth there is little degradation. However, for eleva-

tion, it seems that SDE's pinnae provide poor elevation cues for SDO as well, supporting the notion

that acoustic features of the transforms determine localization.

If acoustic features do determine localization, one might conclude the reciprocal case is true; that

SDE could actually improve his performance if he could listen "through" SDO' s ears. Figure 11

plots these data. Again, SDE, whose azimuth judgements are accurate for stimuli synthesized from

his own HRTFs, performs nearly as well when listening to SDO's azimuth cues. However, it appears

that cross-ear listening is not a symmetrical effect for elevation. Even after about 50 hr of testing,

compared to only 2 hr for the good localizers, SDE still could not take advantage of the presumably

better cues provided by SDO's pinnae. These data are hardly conclusive since they are based on a

sample size of one; only SDE of the eight subjects in Wightman and Kistler (1989b) showed such

poor elevation performance to begin with. But they are suggestive. It ma2¢ be that there is a critical

period for localization which, once past, can never be regained. Perhaps more likely is that, analo-

gous to the experiments with prisms in visual adaptation (see Welch, 1978), SDE would need pro-

longed and consistent exposure to SDO's pinnae in order to learn to discriminate the subtle acoustic

cues he does not normally experience. Apparently, a few hours of testing a day, especially in the

absence of either verbal feedback or correlated information from the other senses, are not enough to

allow adaptation to occur.
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Inexperienced Listeners and Nonindividualized HRTFs

In practice, measurement of each potential listener's HRTFs may not be feasible. It may also be

the case that the user of a 3D auditory display will not have the opportunity for extensive training.

Thus, a critical research issue for virtual acoustic displays is the degree to which the general popula-

tion of listeners can readily obtain adequate localization cues from stimuli based on nonindividual-

ized transforms. The individual difference data of figures 9 through 11 suggest that, even in the

worst case, using nonindividualized transforms does not degrade localization accuracy much more

than the listener's inherent ability. In general, then, even inexperienced listeners may be able to use a

particular set of HRTFs as long as they provide adequate cues for localization. A reasonable

approach is to use the HRTFs from a subject whose measurements have been "behaviorally-

calibrated" and are thus correlated with known perceptual ability in both free-field and headphone

conditions. Recently, Wenzel et al. (1991) completed a more extensive study using a variant on the

cross-ear listening paradigm; 16 inexperienced listeners judged the apparent spatial location of

sources presented over loudspeakers in the free field or over headphones. The headphone stimuli

were generated digitally using HRTFs measured in the ear canals of a representative subject, SDO, a

"good localizer" from the experiment by Wightman and Kistler (1988b).

Figure 12 illustrates the behavior of 12 of the 16 subjects. When front-back confusions are

resolved, localization performance is quite good, with judgements for the nonindividualized stimuli

nearly identical to those in the free-field. Like SDE in Wenzel et al. (1988b), 2 of the subjects show

poor elevation performance in both free-field and headphone conditions, a response pattern which is

at least consistent across the free-field and virtual source conditions (fig. 13). The third pattern is

illustrated in figure 14; here, 2 subjects show inconsistent behavior with poor elevation accuracy in

only the synthesized conditions. The latter phenomenon, if it turns out to be common, would be a

problem for virtual displays.

In general, these data suggest that most listeners can obtain useful directional information from

an auditory display without requiring the use of individually-tailored HRTFs, particularly for

azimuth. However, a caveat is important here. Again, the results plotted in figures 6 and 9 through

14 are based on analyses in which errors due to front/back confusions are resolved. For free-field

versus simulated free-field stimuli, experienced listeners in the Wightman and Kistler study exhibit

front/back confusion rates of about 6 vs. I 1% while the inexperienced listeners show average rates of

about 19 vs. 31%. Note, though, that the existence of free-field confusions indicates that these rever-

sals are not strictly the result of the simulation. It is possible, as Asano et al. (1990) have claimed,

that these errors diminish as subjects adapt to the unusual listening conditions provided by static

anechoic sources, whether real or simulated. The difference in free-field confusion rates between the

inexperienced listeners of this experiment and the more experienced subjects of Wightman and

Kistler tend to support this view. Thus, it may be that some form of adaptation or training with

feedback will be required to take full advantage of a virtual acoustic display.
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Figures 12. Scatterplots of actual source azimuth (and, in the insets, elevation) versus judged source
azimuth for subject SIK in both free-field and headphone conditions. The plot on the left plots free-

field judgements and the plot on the right shows judgements for the stimuli synthesized from nonin-

dividualized transfer functions. Each data point represents the centroid of 9 judgements. 24 source

positions are given in each plot. Data from 6 different source elevations are combined in the azimuth
plots and data from 18 different source azimuths are combined in the elevation insets. Note that the

scale is the same in the azimuth and elevation plots.
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Figures 13. Scatterplots of actual source azimuth (and, in the insets, elevation) versus judged source

azimuth for subject SID in both free-field and headphone conditions. The plot on the left plots free-

field judgements and the plot on the right shows judgements for the stimuli synthesized from nonin-

dividualized transfer functions. Each data point represents the centroid of 9 judgements. 24 source

positions are given in each plot. Data from 6 different source elevations are combined in the azimuth

plots and data from 18 different source azimuths are combined in the elevation insets. Note that the

scale is the same in the azimuth and elevation plots.
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Figures 14. Scatterplots of actual source azimuth (and, in the insets, elevation) versus judged source

azimuth for subject SIM in both free-field and headphone conditions. The plot on the left plots free-

field judgements and the plot on the right shows judgements for the stimuli synthesized from nonin-

dividualized transfer functions. Each data point represents the centroid of 9 judgements. 24 source

positions are given in each plot. Data from 6 different source elevations are combined in the azimuth

plots and data from 18 different source azimuths are combined in the elevation insets. Note that the

scale is the same in the azimuth and elevation plots.

IMPROVING VIRTUAL ACOUSTIC DISPLAYS: PROBLEM AREAS AND RESEARCH

ISSUES

Although the reason for errors such as front-back confusions is not completely understood, they

are probably due in large part to the static nature of the stimulus and the ambiguity resulting from the

so-called cone of confusion (Mills, 1972). Assuming a stationary, spherical model of the head, a

given interaural time difference correlates ambiguously with the direction of a sound source, with a

conical shell describing the locus of all possible sources (fig. 15). However, cone-of-confusion

effects alone cannot explain a front-to-back response bias, and it may be that visual dominance plays

a substantial role in auditory localization (see Warren et al., 1981). That is, given an ambiguous

acoustic stimulus in the absence of an obvious visual correlate, it may be that the perceptual system

resolves the ambiguity with a heuristic that assumes the source is behind the listener where it can't
be seen.

Several stimulus characteristics may help to minimize these errors. For example, the addition of

visual cues, dynamic cues correlated with head motion, and well-controlled environmental cues
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Figure 15. Illustration of the cone-of-confusion effect for different interaural delays. Assuming a

spherical head and symmetrically-located ear canals, all sound sources lying along a hyperbolic sur-

face would produce the same interaural delay in two dimensions (e.g., the horizontal plane) and a

conical surface in three dimensions.

derived from models of room acoustics may improve the ability to resolve these ambiguities. By

taking advantage of the head-tracker in the real time system, we can close the loop between the audi-

tory, visual, vestibular, and kinesthetic systems and study the effects of dynamic interaction with

relatively complex, but known, acoustic environments.

A related problem in synthesizing veridical acoustic images is the fact that such stimuli some-

times fail to externalize, particularly when the signals are unfamiliar (e.g., the spectrally-scrambled

noisebursts used here) and simulated from anechoic measurements of HRTFs. Thus cues which pro-

vide a sense of distance and environmental context, such as the ratio of direct to reflected energy and

other characteristics specific to particular enclosed spaces, may also enhance the externalization of

images (Coleman, 1963; Gardner, 1968; Laws, 1972; 1973; Plenge, 1974; Borish, 1984; Begault,
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1987;1990).Further,just aswecometo learnthecharacteristicsof apaaicularroomor concerthall,
thelocalizationof virtual soundsmayimproveif the listeneris allowedto becomefamiliar with
sourcesasthey interactin aparticularartificial acousticworld.For example,perhapssimulationof
anasymmetricroomwould tendto aidthe listenerin distinguishingfront from rearlocations
(BegaultandWenzel,in progress).However,thespecificparametersusedin sucha modelmustbe
investigatedcarefully if localizationaccuracyis to remainintact.For example,Blauert(1983)
reportsthatthespatialimageof asoundsourcegrowslargerandincreasinglydiffusewith increasing
distancein areverberantenvironment,aphenomenonwhichmaytendto interferewith theability to
judge thedirectionof thesource.Further,thesuccessof anyreasonably-complexspatialdisplaywill
dependuponourunderstandingof localizationmasking,or thestimulusparameterswhichaffect the
identification,segregation(e.g.,Bregman,1990),anddiscrimination(e.g.,Perrott, 1984a,b)of
multiplesources.Surprisingly,little or no researchhasbeendoneon thelocalizationof morethan
two simultaneoussources.

Anothercritical areafor researchis thefurtherspecificationof therole of individualdifferences
andperhapsthedevelopmentof efficient techniquesfor trainingor adaptationto nonindividualized
transforms.Thefact thatindividualdifferencesin performanceareapparentlycorrelatedwith acous-
tical idiosyncrasiesin theHRTFssuggeststhatthesystematicanalysisandmanipulationof HRTF
characteristicsmayprovideameansfor counteractingindividualdifferenceeffects.Givenappropri-
ateadaptationtechniques,it mayeventuallybepossibleto constructa setof "universaltransforms"
usingparametrictechniqueslike Genuit'sstructuralmodel(1986),datareductiontechniqueslike
specializedaveragingmodelsandprincipalcomponentsanalysis(Asanoet al., 1990;Kistler and
Wightman,1990),or perhapsevenenhancingthefeaturesof empirically-derivedtransferfunctions
(DuriachandPang,1986).

Otherresearchwill be relatedto furtherrefinementsin thetechniquesfor themeasurement,
manipulation,andperceptualvalidationof HRTFs,includingpracticalsignal-processingissuessuch
asdeterminingoptimal techniquesfor interpolationbetweenmeasuredor modeledtransformsto
ensureveridical motion.

Thesimulationtechniquesinvestigatedhereprovidebothameansof implementingavirtual
acousticdisplayandtheability to studyfeaturesof humansoundlocalizationthatwerepreviously
inaccessibledueto a lackof controlover thestimuli. Theavailabilityof realtime controlsystems
(e.g.,Wenzeletal., 1988a)furtherexpandthescopeof theresearch,allowingthestudyof dynamic,
intersensoryaspectsof localizationwhichmaydomuchtowardalleviatingtheproblemsencountered
in producingthereliableandveridicalperceptionwhich is critical for manyappliedcontexts.
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